

Jamestown Masterplan Stormwater Management Strategy

Final Report
September 2023

www.jbaconsulting.ie

Dublin City Council Civic Offices, Wood Quay, Dublin 8

JBA Project Manager

Ross Bryant Unit 24 Grove Island Corbally, Limerick, Ireland

Revision history

Revision Ref/Date	Amendments	Issued to
S3-P01/20.03.23	Initial Draft Report	Dublin City Council
S3-P02/24.03.23	Draft for Consultation	Dublin City Council
S3-P03/28.03.23	For Public Consultation	Dublin City Council
S3-P04/12.05.23	Final Report	Dublin City Council
S3-P05/25.05.23	Final Report	Dublin City Council
S3-P06/08.09.23	Final Report	Dublin City Council

This report describes work commissioned by Dublin City Council.

Prepared by Paul Browne BEng (Hons) MIEI

Engineer

Reviewed by Michael O'Donoghue BEng CEng MIEI

Associate Director

Purpose

This document has been prepared as an SWMP for Dublin City Council. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Dublin City Council.

Copyright

© JBA Consulting Engineers and Scientists Limited 2023.

Carbon footprint

A printed copy of the main text in this document will result in a carbon footprint of 58g if 100% post-consumer recycled paper is used and 173g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

Contents

1	Introduction	1
1.1	Terms of Reference	1
1.2	Background	1
1.3	Aims & Objectives	2
1.4	Report Structure	2
1.5	Technical Principles	2
1.6	Legislative Requirements	4
2	Existing Infrastructure	6
2.1	Existing Stormwater Network	6
2.2	Fluvial Data	7
2.3	Dublin FloodResilienCity Pluvial Mapping	12
2.4	CFRAM	13
2.5	PFRA & NIFM	13
2.6	JBA Hydraulic Modelling	13
2.7	Finglas Stream Topography	15
3	Proposed Green Infrastructure	16
3.1	Rainwater Management/GI philosophy	16
3.2	Green Infrastructure Design	17
4	Conclusion	26
Append	lix A - Drawings	27
Append	ix B - Calculations	28

List of Figures

Figure 1-1 Jamestown SDRA Lands (Source: DCC)	1
Figure 2-1 DCC Surface Water Network (Source: DCC)	6
Figure 2-2 GDSDS Infoworks Model of Finglas Stream (Source: DCC)	7
Figure 2-3 Finglas Stream Overview (Source: GDSDS)	8
Figure 2-4 Watercourses through Jamestown Lands (Source: GDSDS and Site Walko	ver) 9
Figure 2-5 Finglas Stream Open Channel Section (Facing East)	9
Figure 2-6 Eastern Drainage Connection Open Channel Section (Facing West)	10
Figure 2-7 FloodResilienCity Flood Map	12
Figure 2-8 Finglas Stream Indicative Flood Zone Mapping	14
Figure 2-9 Finglas Stream Climate Change Flood Mapping 1% AEP	14
Figure 2-10 Area Overview with LiDAR and Indicative Flow Paths and Depressions	15
Figure 3-1 Green Infrastructure open swale (Source: biocycle.net)	17
Figure 3-2 Typical Green Infrastructure Corridor (Source: City Edge Project, DCC)	18
Figure 3-3 Proposed Drainage Areas	19
Figure 3-4 1% AEP event attenuation requirements	25
Figure 3-5 Indicative drainage connection from Jamestown Lands to existing network	k on
Jamestown Road	25
List of Tables	
Table 1-1 Return Periods & Annual Exceedance Probabilities	2
Table 1-2 Future Condition Adjustments	3
Table 2-1 Summary of Recent Flood Events in Dublin	10
Table 3-1 GI Requirements	16
Table 3-2 Calculation of QBAR for each drainage area	21
Table 3-3 Calculation of cumulative QBAR for drainage areas linked in series	22
Table 3-4 Calculation of QBAR for each drainage area as a whole	22
Table 3-5 Attenuation Simulation Requirements - 100-year event (1% AEP)	23
Table 3-6 Attenuation Simulation Requirements - 100-year event (1% AEP)	24

Abbreviations

1D One Dimensional (modelling)
2D Two Dimensional (modelling)
AEP Annual Exceedance Probability
AFA Area for Further Assessment

CFRAM Catchment Flood Risk Assessment and Management

DCC Dublin City Council

DCDP Dublin County Development Plan

DTM Digital Terrain Model

EPA Environmental Protection Agency

FEH Flood Estimation Handbook

FFL Finished Floor Level FRA Flood Risk Assessment

FRMP Flood Risk Management Plan

FRR Flood Risk Review
FSU Flood Studies Update

GIS Geographical Information System

HEFS High End Future Scenario HPW High Priority Watercourse

JFLOW 2-D hydraulic modelling package developed by JBA

JT Justification Test
LA Local Authority

MPW Medium Priority Watercourse
MRFS Medium Range Future Scenario

OPW Office of Public Works
OSi Ordnance Survey Ireland

PFRA Preliminary Flood Risk Assessment

RSES Regional Spatial and Economic Strategy

RMS Rainwater Management Strategy
SEA Strategic Environmental Assessment
SFRA Strategic Flood Risk Assessment
SuDS Sustainable Drainage Systems

1 Introduction

1.1 Terms of Reference

JBA Consulting was appointed by Dublin City Council to prepare the Stormwater (Rainwater) Management Strategy for the Jamestown Lands Masterplan. Hereafter, this will be referred to as an RMS.

1.2 Background

In June 2021, DCC re-zoned 43Ha of industrial lands between Jamestown Road and St. Margarets Road/McKee Avenue, Finglas from Land Use Zoning Objective Z6 to Land Use Zoning Objective Z14 and designated the lands a Strategic Development and Regeneration Area (SDRA). The objective that underpinned this decision was "to seek the social, economic and physical development and/or rejuvenation of an area with mixed-use, of which residential and Z6 would be the predominant uses". These lands are hereafter defined as the Jamestown Lands. These lands have subsequently been designated as part of an extended SDRA in the Dublin City Development Plan 2022-2028 The extent of the lands is identified in Figure 1-1.

Figure 1-1 Jamestown SDRA Lands (Source: DCC)

1.3 Aims & Objectives

The purpose of the Rainwater Management Strategy (RMS) is to develop a strategy for incorporating nature-based solutions into the control of surface water run-off. The Plan is to be in accordance with and founded on the principles of "Nature-base Solutions to the Management of Rainwater and Surface Water Run-off in Urban Areas: Water Sensitive Urban Design Best Practice Interim Guidance Document." This document promotes the approach of assessing urban area drainage on the following three key pillars:

- Environmental: The management of water quality in accordance with the EU Water Framework Directive (2000/60/EC)
- Climate Change: Incorporating projected increased intensity in rainfall events, and introducing both climate resilience and climate adaptability into the Urban Drainage design
- Flood Risk: The urgent need to address the issue of ever-increasing impermeable urban areas and the associated increase in surface water runoff that it generates.

This report will thus develop and RMS that fully integrates with the green infrastructure strategy of the whole developable lands, and not be a standalone hydraulic engineering solution. The RMS will promote sustainable habitat, improve water quality, provide social amenity as well as reducing the pass-forward flows to downstream watercourses.

1.4 Report Structure

The report follows three stages:

- An appraisal of the existing stormwater network and the draft Masterplan layout.
- Definition of SuDS design philosophy for the study area
- Development of Green Infrastructure elements
- Definition of RMS guidance notes for prospective users

All JBA drawings that are included in the report are found within Appendix A. Extended hydraulic calculations are presented in Appendix B.

1.5 Technical Principles

1.5.1 Return Periods

The probability of a flood event is classified by its annual exceedance probability (AEP) or return period (in years). A 1% AEP flood will occur on average once every 100 years and has a 1 in 100 chance (or 1%) of occurring in any given year.

AEP can be a helpful concept as return period is often misunderstood to be the period between large flood events rather than an average recurrence interval. Annual exceedance probability is the inverse of return period as shown in Table 1-1.

Table 1-1 Return Periods & Annual Exceedance Probabilities

Return Period (Years)	Annual Exceedance Probability (%)
2	50
10	10
30	3.3
50	2
100	1
200	0.5

1.5.2 Climate Change

The Planning Guidelines (originally published in 2009) recommend that a precautionary approach to climate change is adopted due to the level of uncertainty involved in the potential effects.

OPW climate change guidance is documented in the "Flood Risk Management Climate Change Sectoral Adaptation Plan", and recommends two climate change scenarios for consideration. These are the Mid-Range Future Scenario (MRFS) and the High-End Future Scenario (HEFS). The MRFS is intended to represent a "likely" future scenario based on the wide range of future predictions available. The HEFS represents a more "extreme" future scenario at the upper boundaries of future projections. Based on these two scenarios the OPW recommended allowances for climate change are given in Table 1-2.

Table 1-2 Future Condition Adjustments

	MRFS	HEFS
Extreme Rainfall Depths	+20%	+30%
Flood Flows	+20%	+30%
Mean Sea Level Rise	+500mm	+1000mm
Land Movement	-0.5mm / year*	-0.5mm / year*
Urbanisation	No General	No General
	Allowance -	Allowance -
	Review on Case	Review on Case
	by Case Basis	by Case Basis
Forestation	-1/6 Tp**	-1/3 Tp**
		+10% SPR***

Notes:

DCC produced the "Sustainable Drainage Design & Evaluation Guide" in 2021. This states that "SuDS design must demonstrate site containment or surface runoff for design rainfall intensities with additional 20% uplift for climate change." It also notes that this climate change allowance should be considered for both attenuation storage and conveyance calculations. This % uplift on rainfall aligns with the MRFS stated by the OPW. This is the % uplift that has been applied for the proposed GI within this study area. This is key overarching document with respect to all Sustainable Drainage Design for all DCC lands. The Jamestown RMS isn't intended to replace or supersede this but is intended to provide additional specifics where required on how this existing guidance is to be applied to the Jamestown Lands.

^{*} Applicable to the southern part of the country only (Dublin - Galway and south of this)

^{**} Reduce the time to peak (Tp) by a third; this allows for potential accelerated runoff that may arise as a result of drainage of afforested land

^{***} Add 10% to the Standard Percentage Runoff (SPR) rate; this allows for increased runoff rates that may arise following felling of forestry

1.6 Legislative Requirements

1.6.1 Water Framework Directive (WFD) (2000/60/EC)

This is a European Parliament Directive and of the Council establishing a framework for Community action in the field of water policy. This directive is concerned with the protection of the aquatic ecosystem by preventing any further deterioration in status of waters, groundwater and water dependent ecosystems and where necessary the restoration of the water body, to achieve a 'good' condition. The status is based on both the ecological status as well as the natural chemical and physical characteristics. In addition to qualitive targets, the Directive also promotes the sustainable use of water resources and most notably, the elimination of the discharge of specific hazardous substances.

The legislation places onus upon stakeholders, including both the polluters and regulators, to ensure all appropriate measures are taken to protect the environment from risk

This RMS aims to bring the WFD to the forefront of the urban drainage strategy.

1.6.2 EU Floods Directive

The founding principles for flood management throughout Ireland are based on the EU Floods Directive. The Office of Public Works are the national authority for the EU Floods Directive in Ireland. DCC have incorporated the objectives of the Catchment Flood Risk Assessment and Management Programme into its own development plan policies. These are defined under SI13 through to SI21. With respect to the stormwater drainage in Jamestown, SI21 is the most relevant policy.

SI21: To minimise flood risk arising from pluvial (surface water) flooding in the City by promoting the use of natural or nature-based flood risk management measures as a priority, by requiring the use of sustainable drainage systems (SuDS) to minimise and limit the extent of hard surfacing and paving, and requiring the use of sustainable drainage techniques, where appropriate, for new development or for extensions to existing developments, in order to reduce the potential impact of existing and predicted flooding risk and to deliver wider environmental and biodiversity benefits, and climate adaption.

1.6.3 The Planning & Development Act 2000

This gives local government power of sanction regarding acceptance, or otherwise, of developer proposals. This is generally enacted through defined objectives in the local authority's County/City Development Plan.

The Dublin City Development Plan 2022-2028 contains overarching Green Infrastructure principles, as well as objectives specific to Jamestown.

General SuDS policies are identified within SI22 through to SI26. These are to applied to all developments in Jamestown.

From these policies, SI22 sets out the approach to all Sustainable Drainage Systems.

SI22: To require the use of Sustainable Drainage Systems (SuDS) in all new developments, where appropriate, as set out in the Greater Dublin Strategic Drainage Study (Vol 2: New Development)/ Greater Dublin Regional Code of Practice for Drainage Works and having regard to the guidance set out in Nature-based Solutions to the Management of Rainwater and Surface Water Runoff in Urban Areas, Water Sensitive Urban Design Best Practice Interim Guidance Document (DHLGH, 2021). Sustainable Drainage Systems (SuDS) should incorporate nature-based solutions and be designed in accordance with the Dublin City Council Sustainable Drainage Design & Evaluation Guide (2021) which is summarised in Appendix 12. SuDS should protect and enhance water quality through treatment at source while enhancing biodiversity and amenity.

SI23 sets out the requirements for green/blue roofs. This requires all new developments with roof areas in excess of 100 sq. metres to provide for a green blue roof designed in accordance with DCC's own Green Blue Roof Guide (2021). This will be of particular importance to Jamestown where blue roof attenuation will need play a significant role.

SI25 is relevant to this exercise, stating the requirement to produce this SWMP.

SI25: To require the preparation of a Surface Water Management Plan as part of all new developments in accordance with the requirements of Appendix 13 – the Council's Surface Water Management Guidance.

These are complemented by Green Infrastructure policies GI1-8. The two key policies are:

GI2: To develop an interconnected green infrastructure network of strategic natural and semi-natural areas with other environmental features including green spaces, rivers, canals, the coastal and marine area, and other physical features including streets and civic spaces that supports ecological, wildlife, and social connectivity.

GI5: To integrate urban greening features including nature-based solutions into the existing public realm where feasible and into the design of public realm projects for civic spaces and streets.

This imposes a requirement to create multi-purpose green space, utilising nature-based drainage solutions as part of a green network.

This will be the intention for Jamestown, where the inter-connected green infrastructure currently presented in the draft Masterplan will also serve the purpose as stormwater corridors where possible. These corridors will be considered based on the DCC Sustainable Drainage Design & Evaluation Guide.

Note, individual site will be required to attenuate their own run-off to the requirements set out in the existing DCC guidelines. The public spaces and green corridors will attenuate their own run-off, and be used for conveyance through the development.

A key requirement for attenuation identified under SDRA 3 is:

• Future Developments on the subject lands shall allow for the control of outflow to the River Tolka, with surface water discharges limited to 0-2l/s/ha for the 1 in 100 year storm event, including an additional 20-30% to allow for climate change.

This broadly aligns with the GDSDS Requirement for River Flood Protection (Criterion 4), which states Maximum discharge rate of QBAR or 2l/s/ha, whichever is the greater, for all attenuation storage where separate "long term" storage cannot be provided.

In order to align with the GI policies stated earlier, some attenuation will need to be considered as part of the integrated green infrastructure to attenuate flows from public realm surfaces. Individually developed sites will attenuate their own flows with their individual footprints.

2 Existing Infrastructure

2.1 Existing Stormwater Network

Dublin City Council provided the local stormwater network in GIS format to JBA Consulting. A review shows the network is largely incomplete through the Jamestown Lands. Refer to Figure 2-1. Key features such as the route of the Finglas Stream culvert through the Jamestown Lands are missing from the network. These network elements are under private control and have not been taken in charge by Dublin City Council.

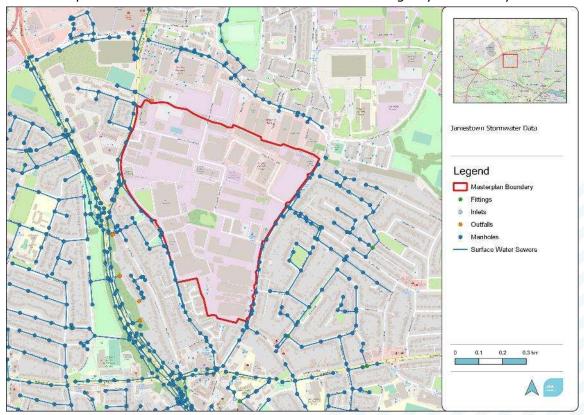


Figure 2-1 DCC Surface Water Network (Source: DCC)

However, the GDSDS Infoworks model files were provided to JBA Consulting. A review shows the Finglas Stream culvert has been captured through the Jamestown Lands. Refer to Figure 2-2.

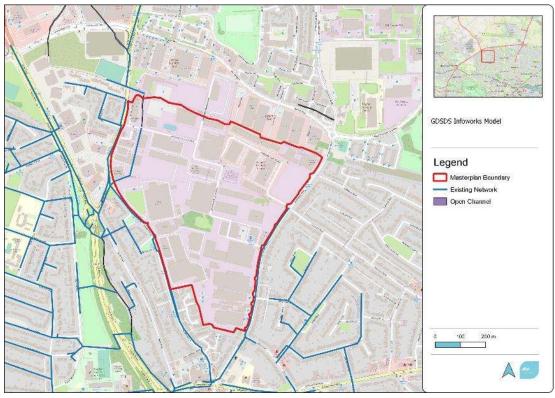


Figure 2-2 GDSDS Infoworks Model of Finglas Stream (Source: DCC)

2.2 Fluvial Data

2.2.1 Finglas Stream

The main watercourse traversing the Jamestown Lands is the Finglas Stream. The Greater Dublin Strategic Drainage Strategy (GDSDS) studies identified that the Finglas Stream originates north of the M50 as a series of undefined channels. The stream is culverted under the M50 and through the Charlestown Shopping Centre. Flowing in a general north-south direction, the Finglas Stream enters the Jamestown Lands via a c.700mmX1230mm culvert along the northern boundary before discharging to an open channel behind a series of warehouses. This open channel at present is severely overgrown and silted, with visible fly-tipping. The channel dimensions are c.3m wide by c.1m depth to bed level. The Finglas Stream gets re-culverted c.120m to the south as it passes under the Jamestown entrance road beside Van Signs Ltd. This culvert is 1200mmØ circular and runs for c.260m, emerging from the Jamestown Lands at the roundabout on St. Margaret's Road and McKee Avenue. The culvert goes through a series of transitions between circular and rectangular shapes before discharging to open channel beside the R135 / Finglas Bypass. The Finglas Stream goes through transitions between open channels and culverts before discharging to the River Tolka via bifurcation. The catchment area at the Finglas Stream outfall is approx. 1,080ha (10km²). Refer to Figure 2-3 for an overview of the Finglas Stream.

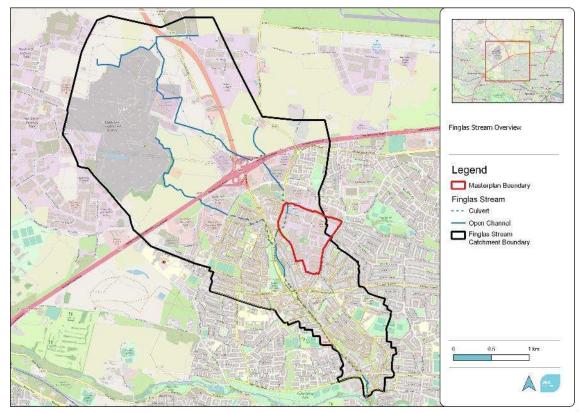


Figure 2-3 Finglas Stream Overview (Source: GDSDS)

2.2.2 Eastern Drainage Connection

Following a site walkover carried out on 25 January 2023, it was identified that there is an additional culvert traversing the Jamestown Lands falling in a general east-west direction (hereafter known as the Eastern drainage connection) and linking into the Finglas culvert to the south of the Manhattan Peanuts factory.

The culvert is not presently mapped, but initial investigations (from DCC) confirm 400mm diameter within the Manhattan Peanuts Site. It is presumed that the culvert drains the Jamestown Lands to the east of the site.

During the site walkover, an open drain was identified along the east boundary of the Jamestown Lands with Jamestown Road. The drain was overgrown, has been partially infilled but seemed to have a small diameter pipe (circa 400mm diameter) inserted.

A review of historic mapping identified the drain falling along plot boundaries towards the Finglas Stream, therefore, it is presumed the drain is positively drained to the Finglas Stream via the unmapped culvert and drains the eastern section of the Jamestown Lands. Much of the drain has been filled in, and therefore the watercourse is presumably culverted. Refer to Figure 2-4 for an overview of the watercourses through the Jamestown Lands.

It has been deduced that this drain is a stormwater infrastructure element, and not an existing watercourse. Therefore, it does not immediately inherit the same protections afforded to a recognised existing watercourse. There is, however, the intention to deculvert this infrastructure and create an east-west watercourse that will convey flows to the Finglas Stream, forming part of the Green Infrastructure.

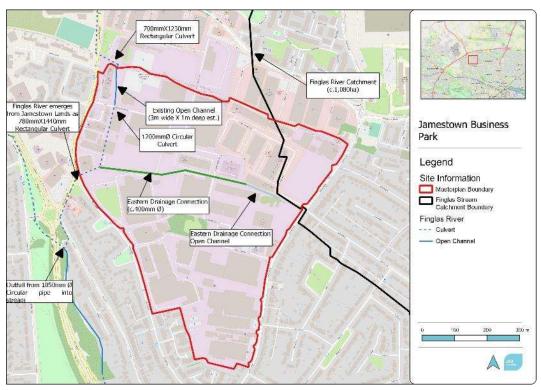


Figure 2-4 Watercourses through Jamestown Lands (Source: GDSDS and Site Walkover)

Figure 2-5 shows the open channel along the Finglas Stream south of the ESB Archives. Figure 2-6 shows the open channel section along the Eastern drainage connection.

Figure 2-5 Finglas Stream Open Channel Section (Facing East)

Figure 2-6 Eastern Drainage Connection Open Channel Section (Facing West)

2.2.3 Historic Flooding

Finglas is only mentioned in the pluvial flood events of 2008 and 2009. Table 2-1 provides details of recent flood events that have impacted on Dublin City, arising from a range of sources but primarily fluvial, pluvial and coastal. Finglas is only mentioned in the pluvial flood events of 2008 and 2009.

Table 2-1 Summary of Recent Flood Events in Dublin ¹

Date	Source of Flooding	Areas impacted
3 January 2014	Coastal: Highest tide ever 3.014m Malin	Four buildings flooded. Some coastal road flooding, Clontarf, Sandymount Promenade flooding, East Link closed, All temporary flood defences put in place.
October 2011	Fluvial, Pluvial & Coastal: Extreme rainfall combined with heavy rainfall previous day, leading to soil saturation. Dublin Airport recorded 9 hour rainfall of 66.8 mm, with Casement Airport recording a daily total of 82.2 mm.	Severe flooding in many parts of Dublin city and east coast, with many homes and businesses under water. Over 1,250 reports of property flooding in Dublin City.

¹ Source: Met Éireann Major Weather Events.

Date	Source of Flooding	Areas impacted
2nd July 2009 (Midnight to 9am)	Pluvial: Spells of heavy, thundery rain affected the east and northeast of the country. 38.2mm of rainfall was recorded at Dublin Airport.	Several areas within the Dublin City Council boundary were affected. One of the worst affected areas was Donnycarney in North Dublin, where the surface water collection system draining to the Wad River culvert was overwhelmed at the Malahide Road, resulting in flooding at Collins' Avenue and Clanmoyle Road. Reports also of spot flooding at Raheny, Clontarf, Drumcondra, Finglas Sandymount, Cabra, and Glendhu Park in Ashtown.
9 August 2008	Pluvial: Dublin Airport recorded 36 mm of rainfall in the worst hour, 43 mm in two hours and over 76 mm in five hours. Records from the south city only indicate 40% of this precipitation.	Within two hours of commencement of precipitation numerous calls were placed with Dublin Fire Brigade, the Dublin Traffic Control Centre and the City Council's Drainage Division. 19 areas of North Dublin had severe flooding, many of these areas had no previous known history of such flooding. Over 150 residential properties were inundated, as well as commercial premises, public buildings, major roadways etc. Areas of Cabra, Finglas and Glendhu Park in Ashtown were badly flooded.
1 February 2002	Coastal: Rain led to high groundwater levels which was coupled with the highest tide ever recorded. This caused sea defences to be overtopped.	Over 1,100 buildings recorded as flooded. Cost estimate of reported flood insurance damages - €60M.
13 November 2000	Fluvial: Heavy rainfall in November, preceded by a very wet October, led to the ground being well saturated and unable to absorb the rain that fell over a 30 hour period on the 12 and 13 November 2000.	Significant disruption and damage, especially in the area of the Lower Tolka catchment.
25 August 1986	Fluvial: Hurricane Charlie – The heaviest rain fell on the mountains south of Dublin. At Kippure an estimated 280 mm fell, about double the normal	Extensive storm and flood damage across the city, coupled with extreme tides giving coastal flooding.

Date	Source of Flooding	Areas impacted
	rainfall in that area for the whole month of August. Record for the greatest fall of rain in a day, measuring 200mm, established at Kilcoole, south of Greystones.	
9–11 June 1963	Pluvial: Thunderstorms were widespread. Highest hourly rainfall ever recorded in Ireland.	Considerable flooding occurred in the area between Dundrum, Blackrock and Sandymount. The high value recorded at Ballsbridge indicated this area must have had exceptional rainfall.

2.3 Dublin FloodResilienCity Pluvial Mapping

Information on pluvial flood risk comes from the EU Interreg IVB FloodResilienCity Project. For the project, a city wide model provided a high-level assessment of pluvial flood risk across Dublin and five Pilot Areas were identified for further detailed investigation of potential pluvial flood risk i.e. Type 2 modelling. Figure 2-7 below shows a map with the pluvial flood outlines. The mapping indicates accumulations of stormwater in many isolated pockets throughout the Jamestown lands. The granularity of the base topographic data is course and the detail of the stormwater network is also not explicitly modelled the SWMP will provide further insight into the management of pluvial risk and the existing stormwater system.

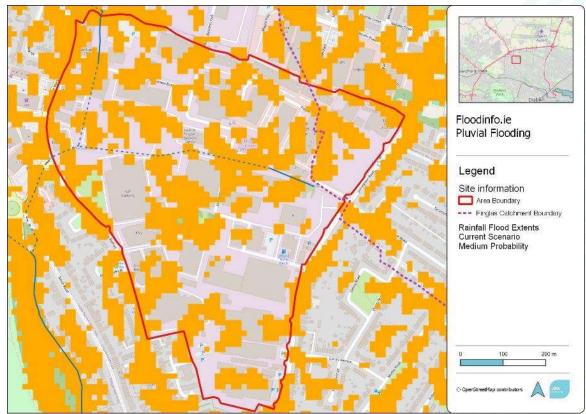


Figure 2-7 FloodResilienCity Flood Map

2.4 CFRAM

In 2011 the OPW commenced appointment of consultants to carry out a more detailed flood risk assessment on key flood risk areas. This work was undertaken under the CFRAM programme across seven river basin districts in Ireland.

Under the Eastern CFRAM Jamestown/Finglas was not identified as an AFA (Area for Further Assessment). Therefore, no CFRAM mapping exits for the Finglas Stream at this location.

2.5 PFRA & NIFM

The Preliminary Flood Risk Assessment (PFRA) is a national screening exercise that was undertaken to identify areas at potential flood risk. The PFRA is a requirement of the EU Floods Directive and the publication of this work has led to, and has informed, more detailed assessment, which is being undertaken as part of the Catchment Flood Risk Assessment and Management (CFRAM) studies. The PFRA study considered flooding from several sources, including fluvial, tidal, pluvial and groundwater, and resulted in a suite of broadscale flood maps.

The PFRA fluvial data has now been replaced by NIFM fluvial flood extents, however this is only the case where CFRAM flood outlines are not provided and where the catchment is greater than 5km². Since the catchment area of the Finglas Stream is less than 5km² though the Masterplan site there is no publicly available flood mapping.

2.6 JBA Hydraulic Modelling

To provide indicative Flood Zones for the Finglas Stream a hydraulic model of the watercourse was constructed using the culvert/network data from the GDSDS, LiDAR data and hydrological estimation of flow volumes. The model runs from upstream of the M50 culvert and has a downstream boundary to the south of the Masterplan lands where the Finglas Stream enters open channel. The modelling was undertaken using the ESTRY-TuFLOW software package and is sufficient in detail to represent the hydraulic effects of the local culverts and in particular the potential surcharging of the downstream 1200mm diameter culvert at the downstream extent of the open channel section. The hydrology has been undertaken using the IH124 urban methodology and will therefore not fully represent the attenuation impacts of the upstream drainage network within this heavily urbanised area. There is scope for future updates to the hydrology and modelling with the construction of a more detailed integrated drainage/catchment model. This could be undertaken at a stage when more detailed design is being undertaken.

2.6.1 Current Scenario Flood Zones

The results of the hydraulic modelling are displayed below in Figure 2-8. The Finglas Stream enters the Masterplan lands through the culvert outlet pictured in Figure 2-5. The flow then enters the riparian zone which is poorly represented by the OPW LiDAR data, nevertheless it is clear that the downstream culvert is only able to convey 66% of the total flow with the remaining surcharging overland (in the 1% AEP event). This overland flow route bypasses the culvert and follows the above ground topographic surface in a south to south-westerly direction back towards the open channel adjacent to the Finglas bypass. It represents a potential flood risk to property within and beyond the boundary of the Masterplan area.

Figure 2-8 Finglas Stream Indicative Flood Zone Mapping

2.6.2 Climate Change Flood Mapping

Climate change has also been considered during the hydraulic analysis and Figure 2-9 below includes a representation of the MRFS and HEFS climate change, see Section 1.5.2 for further details on climate change allowances. The 1% AEP climate change outlines are generally still less than the extent of Flood Zone B and are indicative of increased surcharging at the 1200mm diameter culvert inlet at the downstream of the existing open channel section.

Figure 2-9 Finglas Stream Climate Change Flood Mapping 1% AEP

2.7 Finglas Stream Topography

An alternative representation of the potential on-site depressions can be presented using LiDAR data. Figure 2-10 presents the current LiDAR data for the study area, along with associated overland flowpaths.

There is a general south-westerly gradient present on the site, with some distinct low points. These are presented as blue polygons on the figure below. Two of the polygons correspond to existing fire retention ponds.

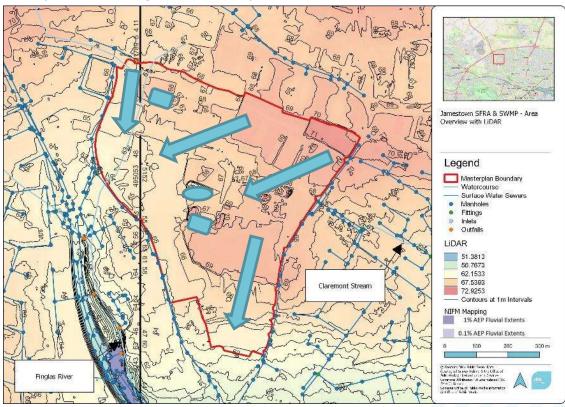


Figure 2-10 Area Overview with LiDAR and Indicative Flow Paths and Depressions

3 Proposed Green Infrastructure

3.1 Rainwater Management/GI philosophy

As aforementioned, the RMS isn't limited to providing hydraulic solutions to a proposed development. The focus is to provide a viable strategy that manages surface water in a sustainable way, providing water quality and environmental benefits as well as ensuring there is no unacceptable residual risk of flooding to each site.

Each design submission proposed within the study area will be required to adhere to the following requirements:

Table 3-1 GI Requirements

RMS Objective	Category	Ref	Standard	Note
	Interception/ Treatment	R1	Provide 5mm interception of rainfall using nature-based solutions at source within private development	Interception to be in compliance with Table 24.6 of CIRIA C753
		R2	Stormwater run-off on all public thoroughfares to pass through one interception measure prior to entering network.	Interception to be in compliance with Table 24.6 of CIRIA C753
Water Quality		R3	Public throughfares to incorporate open swales as stormwater carrying elements where possible to promote greater GI connectivity	
	Attenuation	R4	Provide attenuation using green/blue roofs, detention and/or retention ponds. Sub-surface attenuation may only be permitted when clear reasoning for alternatives has been provided to DCC.	
Climate Change		R5	Allow for 20% climate change on rainfall intensity and 10% for urban creep.	
Flood Risk	Flood protection	R6	Discharge rates to be restricted to the greater of QBAR or 2 l/s/ha.	

This approach is to be taken as complementary to and not a replacement for either GDSDS or DCC's own SuDS guidance documents.

3.2 Green Infrastructure Design

3.2.1 Public Realm

The public realm thoroughfares when integrated into the green infrastructure network provide increased connectivity for habitats across the study area. This directly aligns with the DP Objective GI2: To develop an interconnected green infrastructure network of strategic natural and semi-natural areas with other environmental features including green spaces, rivers, canals, the coastal and marine area, and other physical features including streets and civic spaces that supports ecological, wildlife, and social connectivity.

The public realm thoroughfares will have a requirement to provide interception of their own stormwater runoff and provide corridors for stormwater linkage between each subcatchment. Open swales are very effective in creating an integrated biodiversity network. An example of this is shown in Figure 3-1.

Figure 3-1 Green Infrastructure open swale (Source: biocycle.net)

This can be scaled up as required, with both swales and rain gardens serving as GI measures within the corridors.

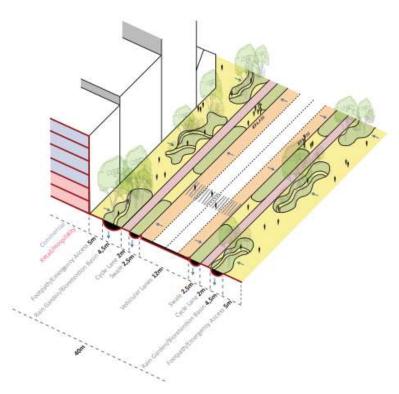
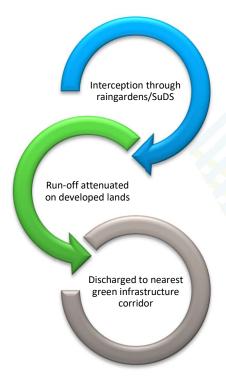



Figure 3-2 Typical Green Infrastructure Corridor (Source: City Edge Project, DCC)

It is acknowledged that the scale of swale that can be accommodated into a public thoroughfare may not be able to cater for all upstream flows received, and that some subsurface drainage is required. The hierarchy for developing stormwater proposals on the public thoroughfares should thus follow the following hierarchy:

There will be an element of attenuation within the public realm, catering for run-off from public areas. The developed lands will attenuate their own run-off within their own individual footprints.

3.2.2 Private Development

As shown in Table 3-1, there are a number of both water quality and hydraulic requirements that are to be adhered to.

Each development must present proposals that provide 5mm interception as per CIRIA C753. These interception measures should be provided at source unless impossible to do so.

Examples of interception measures are:

- · Green/Blue Roofs
- · Rain gardens
- Permeable Paving
- · Bioretention tree pits

A secondary means of interception is to be provided by retention or detention basins within each developed site. This is detailed further in 3.2.3. Initial capacities for the volume to be retained are also provided.

3.2.3 Hydraulic Design

The following design calculations present an indicative stormwater design approach that could be applied to the lands. Within it, it gives an indication of the extent of attenuation volumes within the defined catchment for both public and private lands. This indicative design works on the premise that the public realm storage will only be catering for its own run-off outside the perimeters of the private boundaries. This estimation of the attenuation requirements was carried out using Causeway Flow software. The site was broken down into 8no. drainage areas based on the site topography and available space for attenuation. These areas are shown in Figure 3-3 below.

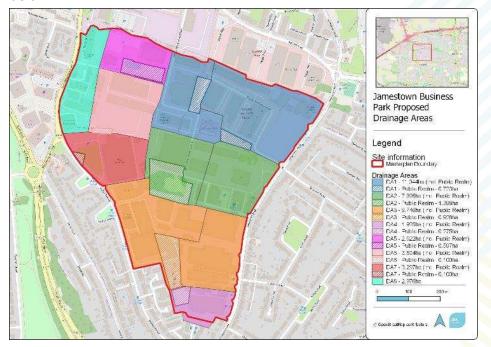


Figure 3-3 Proposed Drainage Areas

Six separate models were completed for the different drainage areas (DA), comprising: (1) DA1, (2) 3no. linked attenuation storages for DA2-4, (3) DA5, (4) DA6, (5) DA7, and (6) DA8. DA's 1, 5, 6, 7 and 8 will drain into the open channels as part of the Masterplan and therefore are not hydraulically linked to the other catchments.

Attenuation storage locations were linked in series by conduits and outflows restricted in the form of a cascading network, taking into account the increasing contributing areas. Flows were restricted by modelling a Hydro-Brake flow control device at the storage nodes. Note, this is not imposing the need for hydro-brake flow controls at this stage but merely identifies the need for some form of flow restriction. Several assumptions had to be taken to make the hydraulic model viable, namely:

- All modelled storage nodes were taken as 1m deep and the plan areas were adjusted accordingly to meet to storage requirements.
- To ensure that downstream storage water levels did not hinder the required pass forward rates of the preceding flow controls, which would skew the attenuation results, the preceding flow control invert levels were placed at a higher level than the downstream water levels (i.e. 1m above the downstream storage invert levels). This indicative only and isn't to impose a means of attenuation depths on the proposed developments.

The models included the following parameters:

• M5-60: 16.400mm

• Ratio-R: 0.274

• Cv: 1.000

 Time of Entry (te): 10mins (to account for time taken to flow through the site stormwater networks)

Additional Storage: 0 m3/ha

Storm Durations: 15-10,080mins

• Simulation Return Periods: 1, 2, 5, 10, 30 and 100-year

Climate Change: 20%

• Additional Area (Urban Creep factor): 10%

The models were set up so that, for a 100-year event, outflows were restricted to QBAR. QBAR was calculated using the IH124 method using a SAAR = 791mm and Soil Type SOIL = 4 (SPR = 0.47), which gave the local QBAR as 5.57l/s/ha, and this calculation is included in Appendix B. The "central" storage nodes (public realm / "PR") for each drainage area had flows restricted to QBAR. The "dummy" nodes were designed to mimic individual plots attenuation requirements. The discharge values for each individual drainage area are summarised in Table 3-2, and are also included in the appended calculations in Appendix B:

Drainage Area	Gross Area (ha)	Open Space Allowance (ha)	Positively Drained Area (Gross - Open Space) (ha)	Positively Drained Area Percentage Impermeability (%)	Net Impermeable Area (ha)	QBAR (Positively Drained Area) (I/s)
1A	3.671	0.734 (20%)	2.937	80	2.350	16.3
1 (PR 1)	0.425	0	0.425	47 (Soil Type 4)	0.2	2.3
1B	6.650	1.330 (20%)	5.320	80	4.256	29.6
1 (PR 2)	0.298	0	0.298	47 (Soil Type 4)	0.14	1.6
2A	2.505	0.501 (20%)	2.004	80	1.603	11.1
2B	4.023	0.804 (20%)	3.219	80	2.575	17.9
2 (PR)	1.398	0	1.398	47 (Soil Type 4)	0.657	7.7
3A	4.789	0.957 (20%)	3.832	80	3.066	21.3
3B	4.029	0.805 (20%)	3.224	80	2.579	17.9
3 (PR)	0.928	0	0.928	47 (Soil Type 4)	0.436	5.1
4A	1.650	0.330 (20%)	1.320	80	1.056	7.3
4 (PR)	0.275	0	0.275	47 (Soil Type 4)	0.129	1.5
5A	2.025	0.405 (20%)	1.620	80	1.296	9.0
5 (PR)	0.597	0	0.597	47 (Soil Type 4)	0.281	3.3
6A	3.724	0.745 (20%)	2.979	80	2.383	16.5
6 (PR)	0.100 (rounded up from 0.099)	0	0.100	47 (Soil Type 4)	0.047	0.5
7A	3.197	0.639 (20%)	2.558	80	2.046	14.2
7 (PR)	0.100 (rounded up from 0.094)	0	0.100	47 (Soil Type 4)	0.047	0.5
8A	2.976	0.595 (20%)	2.381	80	1.905	13.2
Total	43.36	7.85	35.52		27.05	

Table 3-2 Calculation of QBAR for each drainage area

As DAs 2-4 are linked in series, the pass-forward rate increases as the system increases its upstream catchment. The pass-forward rates at DAs 3 and 4 will therefore be QBAR for the entire contributing areas at the respective locations. The linked network for DAs 2-4 will discharge at QBAR to the public network at Jamestown Road. This cumulative effect on flow rates is presented in Table 3-3.

Drainage Area	Combined Gross Area (ha)	Combined Open Space Allowance (ha)	Cumulative Positively Drained Area (ha)	Cumulative Net Impermeable Area (ha)	Cumulative QBAR (Positively Drained Area) (I/s)
3 (2+3 Cumulative)	17.672	3.067	14.605	10.916	81.3
4 (2+3+4 Cumulative)	19.597	3.397	16.200	12.101	90.2

Table 3-3 Calculation of cumulative QBAR for drainage areas linked in series

QBAR rates for each sub-catchment were also calculated and are presented in Table 3-4.

Drainage Area	Positively Drained Area (ha)	QBAR (Positively Drained Area) (I/s)
1	8.98	50.0
2	6.621	36.8
3	7.984	44.4
4	1.595	8.8
5	2.217	12.3
6	3.079	17.1
7	2.658	14.8

Table 3-4 Calculation of QBAR for each drainage area as a whole

The "dummy" storage nodes (representing the developed land attenuation) were placed at a higher level in the model than the downstream "central" nodes (representing the public realm attenuation) to achieve the required QBAR pass-forward rates. The catchment areas assigned to the "dummy" nodes represent the individual developments, while the catchment areas assigned to the "central" nodes represent public realm areas.

Note, the model presents these attenuation areas as sub-surface structures in the calculation outputs appended to this document. This was necessary to manage the hydraulic head requirements of the flow control units initially used in order to develop a magnitude of attenuation, as previously outlined.

The simulations produced a volume of water at each node, "dummy" and "central", which would need to be stored. The storage was sized by manipulating the plan area while keeping the depth constant. The simulation results are shown in Table 3-5 and Table 3-6 for the 100-year (1% AEP event) critical storm and include for climate change and urban creep allowances. The storage structures have been designed to fill to capacity and discharge at the required flow rates using a 1m head level on the flow controls during the 100-year event. The "dummy" node volumes represent an

indicative volume only which would need to be stored in each plot by the stormwater networks and attenuation systems.

It is important to recognise that the generated volumes and flow rates are specific to this high-level model only, taking into consideration all the assumptions made. The actual attenuation volumes and flow rates of the storage structures would need to be verified during the design of same.

Drainage Area	"Dummy" No	de	"Central" Node	All Nodes	
	Storage (m3)	Outflow (I/s)	Storage (m3)	Outflow (I/s)	Critical Storm Duration (minutes)
1A	1766	16.3	-	-	1440
1 (PR 1)	-	-	110	18.7	960
1B	3309	29.6	-	-	2160
1 (PR 2)	-	-	50	50.0	720
2A	1175	11.6	-	-	1440
2B	1961	17.9	-	-	1440
2 (PR)	-	-	382	36.8	960
3A	2345	21.3	-	-	1440
3B	1961	17.9	-	-	1440
3 (PR)	-	-	151	81.3	960
4A	720	8.8	-		960
4 (PR)	-	-	152	90.2	4320

Table 3-5 Attenuation Simulation Requirements - 100-year event (1% AEP)

Drainage Area	"Dummy" Node		"Central" Node	All Nodes	
	Storage (m3)	Outflow (I/s)	Storage (m3)	Outflow (I/s)	Critical Storm Duration (minutes)
5A	959	9.0	-	-	1440
5 (PR)	-	-	150	12.3	960
6A	1796	16.5	-	-	1440
6 (PR)	-	-	20	17.1	1440
7A	1533	14.2	-	-	1440
7 (PR)	-	-	14	14.8	1440
8A	1451	13.2	-	-	1440

Table 3-6 Attenuation Simulation Requirements - 100-year event (1% AEP)

As is expected, increasing volumes of runoff need to be attenuated in line with longer return periods (1, 2, 5, 10, 30 and 100-year calculations included in Appendix B). Table 3-6 provides indicative volumes required only. Both the final volumes and locations will be defined by the individual development designs.

In the public space, the model indicates a requirement for a small volume of attenuation. The means by which this is incorporated into the green space is at the discretion of the local authority, working with relevant statutory bodies and prospective the developers. There is no final design currently in place for the shape of the public green areas.

Figure 3-4 indicates the indicative volumes for each catchment, represented as 1m deep attenuation structures in plan.

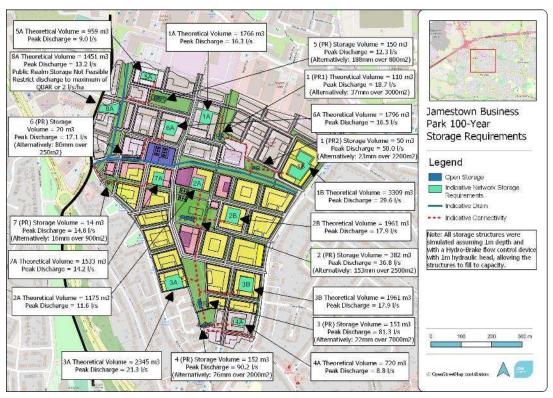


Figure 3-4 1% AEP event attenuation requirements

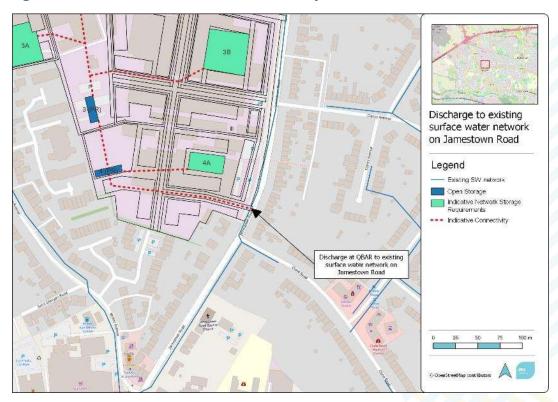
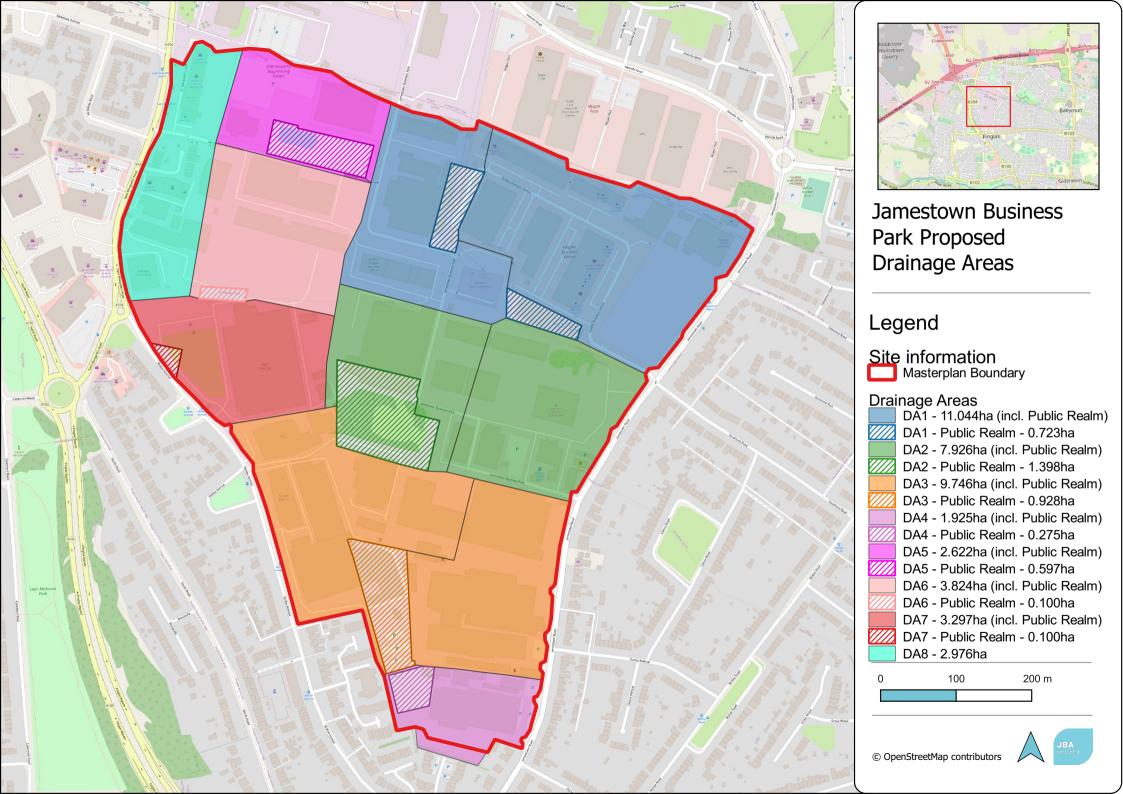
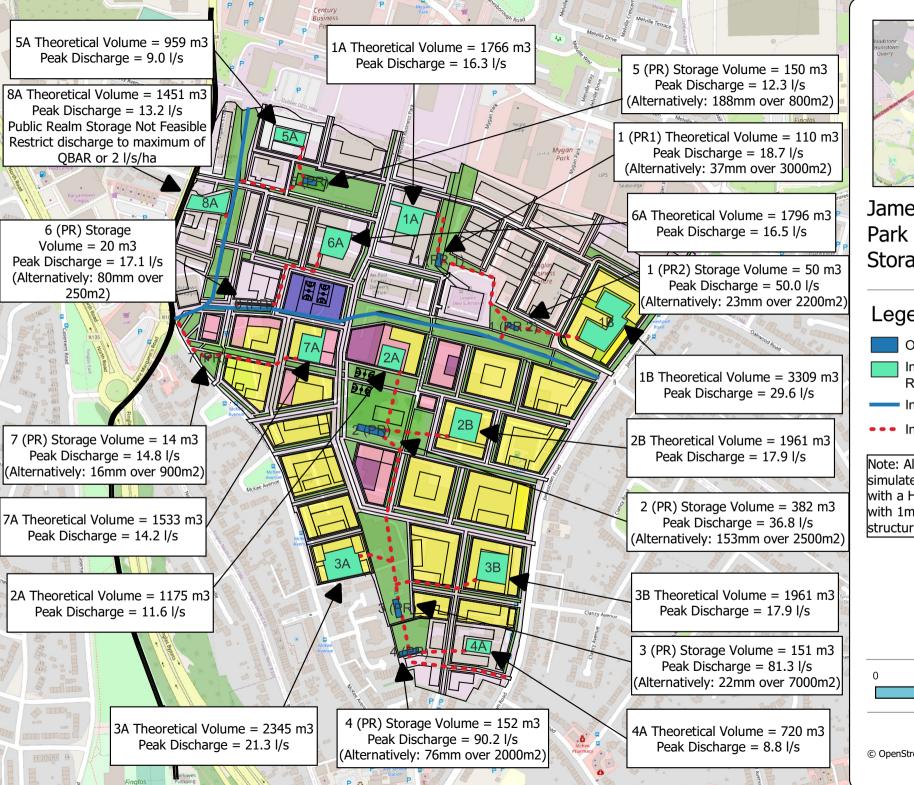


Figure 3-5 Indicative drainage connection from Jamestown Lands to existing network on Jamestown Road

4 Conclusion


The aim of this Rainwater Management Strategy (RMS) is to develop a strategy for incorporating nature-based solutions into the control of surface water run-off.


The following surmises how the RMS will implement this:

- This RMS ensures that any development in the Study Area will require SuDS to be incorporated into their design. The RMS goes one step further in that it ensures that interconnectivity of the green infrastructure network is integrated into the design philosophy.
- The public thoroughfares will provide habitat linkages between each development, bringing the development in line with DCC's green infrastructure policies.
- Site controls will ensure both water quality will be improved both at development level and further improved through the GI network.
- The attenuation network provides clear prescriptive parameters on the requirements of each prospective development in respect to their attenuation responsibilities. This aids the decision-making process at both detailed design and planning level. An indicative attenuation quantum has been provided at a catchment level. This is to give an initial overview of the extent of attenuation that may be required but is not a final design. This will be dependent on the detailed design of each development. A detailed stormwater management plan will be required to be developed as per SI25 of the DCC Development Plan.

Appendix A - Drawings

Jamestown Business Park 100-Year Storage Requirements

Legend

Open Storage

Indicative Network Storage Requirements

Indicative Drain

Indicative Connectivity

Note: All storage structures were simulated assuming 1m depth and with a Hydro-Brake flow control device with 1m hydraulic head, allowing the structures to fill to capacity.

© OpenStreetMap contributors

Appendix B - Calculations

Print

Close Report

1 in 1 year (l/s):

1 in 30 years (l/s):

1 in 100 year (l/s):

1 in 200 years (l/s):

5.95

14.9

18.26

20.01

4.73

11.86

14.54

15.93

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Paul Browne					S	ite Details				
						L	atitude:	53.39722° N		
Site name:	Jamestown				Longitude:		ongitude:	6.298° W		
Site location:	Finglas								0.200 11	
This is an estimation practice criteria in lin management for dev and the non-statutor runoff rates may be trunoff from sites.	elopments" ry standard:	SC03 s for S	30219 (20 SuDS (De	013) , th efra, 20	ne SuDS M 15). This ir	anual C nformat	753 (Ciria, 2015) ion on greenfield		1968914031 Feb 09 2023 10:15	
Runoff estimati	on appro	ach	IH124	1						
Site characteris	stics						Notes			
Total site area (ha	a): 1							0.01/-/ 0		
Methodology							(1) Is Q _{BAR} <	2.0 i/s/na <i>?</i>		
Q _{BAR} estimation m	Q _{BAR} estimation method : Calculate from SPR a				SPR and S	SAAR	When Q _{BAR}	is < 2.0 l/s/ha	a then limiting discharge rates	
SPR estimation m	PR estimation method: Calculate from SOIL			OIL type)	are set at 2	2.0 l/s/ha.			
Soil characteris	tics)efau	ult	Ed	ited					
SOIL type:	4		4			(2) Are flow rates < 5.0 l/s?				
HOST class:	N/	Ά		N/A		Where flow rates are less than 5.0 l/s consent for				
SPR/SPRHOST:	0.4	47		0.47		discharge is usually set at 5.0 l/s if blo				
Hydrological Default characteristics				Ec	dited	vegetation consent flo	vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage			
SAAR (mm):	SAAR (mm):		961	791		elements.				
Hydrological region	on:		12	12		(3) Is SPR/SPRHOST ≤ 0.3?				
Growth curve factor 1 year.		0.85	85 0.85		5					
Growth curve factor 30 years:		2.13	3 2.13			Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.				
Growth curve factor 100 years:		2.61		2.61						
Growth curve fac years:	tor 200		2.86		2.86	3				
Greenfield rund	off rates	D	efault		Edited	l				
Q _{BAR} (I/s):	I/s): 6.9		99	5.57						

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

JBA

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Page 1

Network: Drainage Area 1

PB

10/05/2023

Simulation Settings

Rainfall Methodology **FSR** Skip Steady State Х FSR Region Scotland and Ireland Drain Down Time (mins) 240 M5-60 (mm) 16.400 Additional Storage (m³/ha) 0.0 Ratio-R 0.274 Check Discharge Rate(s) Х Check Discharge Volume

Summer CV 1.000 Analysis Speed Detailed

Storm Durations

15 60 180 360 600 960 2160 4320 7200 10080 30 120 240 480 720 1440 2880 5760 8640

> Return Period Climate Change Additional Area Additional Flow (CC %) (years) (A %) (Q%) 1 20 10 0 2 20 10 0 5 0 20 10 10 20 10 0 30 20 10 0 100 20 10 0

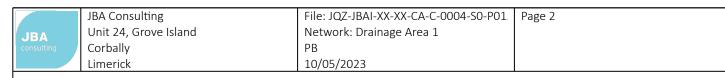
> > Node 1A Online Hydro-Brake® Control

Flap Valve Objective (HE) Minimise upstream storage Replaces Downstream Link Sump Available Invert Level (m) 68.000 Product Number CTL-SHE-0182-1630-1000-1630 Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225 Design Flow (I/s) Min Node Diameter (mm) 1500 16.3

Node 1 (PR1) Online Hydro-Brake® Control

Flap Valve Objective (HE) Minimise upstream storage Replaces Downstream Link Sump Available Χ Invert Level (m) 67.000 Product Number CTL-SHE-0193-1870-1000-1870 Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225 Design Flow (I/s) 18.7 Min Node Diameter (mm) 1500

Node 1B Online Hydro-Brake® Control


Flap Valve Objective (HE) Minimise upstream storage Χ Replaces Downstream Link Sump Available Invert Level (m) 67.000 Product Number CTL-SHE-0235-2960-1000-2960 Design Depth (m) 1.000 Min Outlet Diameter (m) 0.300 Design Flow (I/s) 29.6 Min Node Diameter (mm) 1500

Node 1 (PR2) Online Hydro-Brake® Control

Objective Flap Valve (HE) Minimise upstream storage Replaces Downstream Link Sump Available Invert Level (m) 66.000 Product Number CTL-SHE-0294-5000-1000-5000 Design Depth (m) 1.000 Min Outlet Diameter (m) 0.375 Design Flow (I/s) Min Node Diameter (mm) 50.0

Node 1B Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 67.000 Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins) 720

Depth Inf Area Depth Inf Area Area Area (m) (m²)(m²)(m) (m²)(m²)0.000 3309.0 0.0 1.000 3309.0 0.0

Node 1A Depth/Area Storage Structure

Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)68.000Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)570

Depth Inf Area Inf Area Area Depth Area (m) (m²)(m²)(m) (m²)(m²)0.000 1766.0 0.0 1.000 1766.0 0.0

Node 1 (PR1) Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 67.000 Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins) 390

Depth Area Inf Area Depth Area Inf Area (m²)(m²)(m²)(m) (m²)(m) 0.000 110.0 0.0 1.000 110.0 0.0

Node 1 (PR2) Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 66.000 Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins) 390

Depth Area Inf Area Depth Area Inf Area (m²)(m²)(m²)(m²)(m) (m) 0.0 0.000 50.0 50.0 0.0 1.000

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 1

РΒ

960 minute summer 1 (PR1) 2.001 1 (PR2)

1440 minute summer 1 (PR2) 1.001 OUTFALL

10/05/2023

Page 3

18.6

48.9

2567.8

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (min		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	1B	93	80	0.370	91.2	1225.9810
1440 minute summer	1A	93	80	0.354	50.4	625.5377
960 minute summer	1 (PR1)	58	35	0.330	21.2	36.3372
1440 minute summer	1 (PR2)	87	70	0.405	49.4	20.2455
1440 minute summer	OUTFALL	. 87	70	0.085	48.9	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	ode	(l/s)	Vol (m³)
1440 minute summer	1B	1.000	1 (F	PR2)	29.2	
1440 minute summer	1A	2.000	1 (F	PR1)	16.3	

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

Network: Drainage Area 1 PB

960 minute summer

10/05/2023

Page 4

18.7

49.7

2926.2

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (min		Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	1B	93	0 (0.437	105.8	1445.4810
1440 minute summer	1A	93	0 (0.424	58.4	748.1594
960 minute summer	1 (PR1)	60	0 0	0.396	22.6	43.5195
1440 minute summer	1 (PR2)	90	0 0	0.463	50.6	23.1739
1440 minute summer	OUTFALI	_ 90	0 0	0.085	49.7	0.0000
Link Event	US	Link	[OS	Outflow	Discharge
(Upstream Depth)	Node		No	ode	(l/s)	Vol (m³)
1440 minute summer	1B	1.000	1 (P	R2)	29.6	
1440 minute summer	1A	2.000	1 (P	R1)	16.3	

1 (PR1) 2.001 1 (PR2)

1440 minute summer 1 (PR2) 1.001 OUTFALL

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 1

РΒ

960 minute summer

10/05/2023

Page 5

18.7

50.0

2358.0

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node	Pea (min	-		Node Vol (m³)
1440 minute summer	1B	96	0.52	26 124.0	1738.8860
1440 minute summer	1A	96	0.51	68.5	911.8396
960 minute summer	1 (PR1)	61	.5 0.48	39 23.9	53.8265
960 minute summer	1 (PR2)	60	0.53	33 53.0	26.6465
960 minute summer	OUTFALL	_ 60	0.08	36 50.0	0.0000
Link Event	US	Link	DS	Outflow	<i>y</i> Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	1B	1.000	1 (PR2)	29.6	ò
1440 minute summer	1A	2.000	1 (PR1)	16.3	3

1 (PR1) 2.001 1 (PR2)

960 minute summer 1 (PR2) 1.001 OUTFALL

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

Network: Drainage Area 1

PB 10/05/2023 Page 6

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US	Pea	k	Depth	Inflow	Node
	Node	(min	s)	(m)	(l/s)	Vol (m³)
1440 minute summer	1B	99	90	0.608	139.9	2010.3460
1440 minute summer	1A	99	90	0.601	77.3	1062.0650
720 minute summer	1 (PR1)	49	95	0.586	26.8	64.4955
960 minute summer	1 (PR2)	60	00	0.604	54.3	30.1779
2880 minute summer	OUTFAL	L 168	30	0.086	50.0	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	lode	(l/s)	Vol (m³)
1440 minute summer	1B	1.000	1 (PR2)	29.6	
1440 minute summer	1A	2.000	1 (PR1)	16.3	
720 minute summer	1 (PR1)	2.001	1 (PR2)	18.7	
960 minute summer	1 (PR2)	1.001	OU	ITFALL	50.0	2416.9

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 1

РΒ

10/05/2023

Page 7

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US	Pea	k Deptl	h Inflow	Node
	Node	(min	s) (m)	(l/s)	Vol (m³)
2160 minute summer	1B	150	0.77	2 124.3	2554.4280
1440 minute summer	1A	108	0.77	93.6	1371.2850
480 minute summer	1 (PR1)	46	0.81	2 33.5	89.3070
960 minute summer	1 (PR2)	60	0 0.77	3 55.7	38.6523
120 minute summer	OUTFAL	L 14	6 0.08	50.0	0.0000
Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
2160 minute summer	1B	1.000	1 (PR2)	29.6	
1440 minute summer	1A	2.000	1 (PR1)	16.3	
480 minute summer	1 (PR1)	2.001	1 (PR2)	18.7	
960 minute summer	1 (PR2)	1.001	OUTFAL	L 50.0	2435.2

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 1

РΒ

10/05/2023

Page 8

Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US	Pea	k	Depth	Inflow	Node
	Node	(min	s)	(m)	(l/s)	Vol (m³)
2160 minute summer	1B	156	50	1.000	152.3	3308.2700
1440 minute summer	1A	111	LO	0.999	115.6	1765.0420
960 minute summer	1 (PR1)	66	50	0.998	29.3	109.7840
720 minute summer	1 (PR2)	45	50	0.995	59.2	49.7629
120 minute summer	OUTFAL	L 21	LO	0.086	50.0	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		Ν	Iode	(l/s)	Vol (m³)
2160 minute summer	1B	1.000	1 (PR2)	29.6	
1440 minute summer	1A	2.000	1 (PR1)	16.3	
960 minute summer	1 (PR1)	2.001	1 (PR2)	18.7	
720 minute summer	1 (PR2)	1.001	OU	TFALL	50.0	2040.8

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01 Page 1

Network: Drainage Areas 2, 3, 4

PB

10/05/2023

Simulation Settings

Rainfall Methodology	FSR	Skip Steady State	Χ
FSR Region	Scotland and Ireland	Drain Down Time (mins)	240
M5-60 (mm)	16.400	Additional Storage (m³/ha)	0.0
Ratio-R	0.274	Check Discharge Rate(s)	Χ
Summer CV	1.000	Check Discharge Volume	Χ
Analysis Speed	Detailed		

Storm Durations

15	60	180	360	600	960	2160	4320	7200	10080
30	120	240	480	720	1440	2880	5760	8640	

Return Period	Climate Change	Additional Area	Additional Flow
(years)	(CC %)	(A %)	(Q %)
1	20	10	0
2	20	10	0
5	20	10	0
10	20	10	0
30	20	10	0
100	20	10	0

Node 2A Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	\checkmark
Invert Level (m)	66.000	Product Number	CTL-SHE-0156-1160-1000-1160
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	11.6	Min Node Diameter (mm)	1200

Node 2B Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	X	Sump Available	\checkmark
Invert Level (m)	66.000	Product Number	CTL-SHE-0189-1790-1000-1790
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	17.9	Min Node Diameter (mm)	1500

Node 2 (PR) Online Hydro-Brake® Control

Flap Valve	X	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	\checkmark
Invert Level (m)	65.000	Product Number	CTL-SHE-0258-3680-1000-3680
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.300
Design Flow (I/s)	36.8	Min Node Diameter (mm)	1800

Node 3A Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	✓
Invert Level (m)	65.000	Product Number	CTL-SHE-0204-2130-1000-2130
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	21.3	Min Node Diameter (mm)	1500

JBA

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01 Page 2

Network: Drainage Areas 2, 3, 4

РΒ

10/05/2023

Node 3B Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	\checkmark
Invert Level (m)	65.000	Product Number	CTL-SHE-0189-1790-1000-1790
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	17.9	Min Node Diameter (mm)	1500

Node 3 (PR) Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	\checkmark
Invert Level (m)	64.000	Product Number	CTL-SHE-0361-8130-1000-8130
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.375
Design Flow (I/s)	81.3	Min Node Diameter (mm)	2100

Node 4A Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	\checkmark
Invert Level (m)	64.000	Product Number	CTL-SHE-0137-8800-1000-8800
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	8.8	Min Node Diameter (mm)	1200

Node 4 (PR) Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	\checkmark
Invert Level (m)	63.000	Product Number	CTL-SHE-0378-9020-1000-9020
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.450
Design Flow (I/s)	90.2	Min Node Diameter (mm)	2100

Node 2A Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0	.00000	Safety Fa	ctor 2.0		Invert I	Level (m)	66.000
Side Inf Coefficient (m/hr) 0	.00000	Porc	sity 1.00) Tim	ne to half emp	ty (mins)	570
Depth	Area	Inf Area	Depth	Area	Inf Area		
(m)	(m ²)	(m ²)	(m)	(m ²)	(m ²)		
0.000	1175.0	0.0	1.000	1175.0	0.0		

Node 2B Depth/Area Storage Structure

Base Inf Coefficient (m/hr) Coefficient (m/hr)		,	ctor 2.0 osity 1.00		Invert L ne to half empt	evel (m) ty (mins)	
Depth	Area	Inf Area	Depth	Area	Inf Area		
(m)	(m ²)	(m^2)	(m)	(m^2)	(m^2)		
0.000	1961.0	0.0	1.000	1961.0	0.0		

Node 2 (PR) Depth/Area Storage Structure

Base Inf Coefficient (m/hr) (Side Inf Coefficient (m/hr) (,	ctor 2.0 osity 1.00		Invert Level (m) me to half empty (mins)	
Depth (m) 0.000	` '	Inf Area (m²) 0.0	Depth (m) 1.000	Area (m²) 382.0	Inf Area (m²) 0.0	

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Page 3

Network: Drainage Areas 2, 3, 4

РΒ

10/05/2023

Node 3A Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	65.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	570

Inf Area Depth Inf Area Depth Area Area (m) (m²)(m²)(m) (m²)(m²)0.000 2345.0 1.000 2345.0 0.0 0.0

Node 3B Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	65.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	570

Depth Area Inf Area Depth Area Inf Area (m²)(m²)(m²)(m) (m) (m²)0.000 1961.0 0.0 1.000 1961.0 0.0

Node 3 (PR) Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	64.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	375

 Depth
 Area
 Inf Area
 Depth
 Area
 Inf Area

 (m)
 (m²)
 (m²)
 (m²)
 (m²)

 0.000
 151.0
 0.0
 1.000
 151.0
 0.0

Node 4A Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	64.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	390

 Depth
 Area
 Inf Area
 Depth
 Area
 Inf Area

 (m)
 (m²)
 (m²)
 (m²)
 (m²)

 0.000
 720.0
 0.0
 1.000
 720.0
 0.0

Node 4 (PR) Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	63.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	300

 Depth
 Area
 Inf Area
 Depth
 Area
 Inf Area

 (m)
 (m²)
 (m²)
 (m²)
 (m²)

 0.000
 152.0
 0.0
 1.000
 152.0
 0.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Areas 2, 3, 4

PB 10/05/2023 Page 4

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	P	eak	Depth	Inflow	Node
	Node	(n	nins)	(m)	(l/s)	Vol (m³)
1440 minute summer	2A		900	0.347	34.4	408.0469
1440 minute summer	2B		930	0.361	55.2	707.9335
1440 minute summer	2 (PR)		870	0.397	42.5	151.5551
1440 minute summer	3A		930	0.363	65.7	851.7892
1440 minute summer	3B		930	0.360	55.3	706.2474
1440 minute summer	3 (PR)		870	0.473	81.5	71.4847
960 minute summer	4A		615	0.338	29.8	243.0104
1440 minute summer	4 (PR)		930	0.495	89.1	75.2452
1440 minute summer	OUTFAL	L.	930	0.099	88.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Unstroom Donth)	Nodo			Jodo	(1/c)	\/al /m3\

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.6	
1440 minute summer	2B	1.000	2 (PR)	17.8	
1440 minute summer	2 (PR)	1.001	3 (PR)	35.9	
1440 minute summer	3A	3.000	3 (PR)	21.2	
1440 minute summer	3B	4.000	3 (PR)	17.8	
1440 minute summer	3 (PR)	1.002	4 (PR)	78.8	
960 minute summer	4A	5.000	4 (PR)	8.8	
1440 minute summer	4 (PR)	1.003	OUTFALL	88.3	4625.1

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Areas 2, 3, 4

PB

1440 minute summer 3A

1440 minute summer 3B

960 minute summer

1440 minute summer 3 (PR) 1.002

4A

1440 minute summer 4 (PR) 1.003 OUTFALL

10/05/2023

Page 5

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Pe	ak	Depth	Inflow	Node
	Node	(mi	ins)	(m)	(l/s)	Vol (m³)
1440 minute summer	2A	g	930	0.417	39.9	489.9911
1440 minute summer	2B	g	930	0.429	64.0	841.6823
1440 minute summer	2 (PR)	8	370	0.449	45.3	171.5567
1440 minute summer	3A	g	930	0.432	76.2	1011.9590
1440 minute summer	3B	g	930	0.428	64.1	840.0394
1440 minute summer	3 (PR)	g	900	0.522	84.8	78.8064
960 minute summer	4A	6	530	0.406	34.6	292.3665
1440 minute summer	4 (PR)	g	960	0.544	90.6	82.7102
1440 minute summer	OUTFAL	_L 9	960	0.099	89.5	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		1	Node	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.6	
1440 minute summer	2B	1.000	2 (PR)	17.9	
1440 minute summer	2 (PR)	1.001	3 ((PR)	36.5	

3.000 3 (PR)

4.000 3 (PR)

5.000

4 (PR)

4 (PR)

21.3

17.9

80.1

8.8

89.5

5234.8

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Areas 2, 3, 4

PB 10/05/2023 Page 6

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

US	Pea	ak	Depth	Inflow	Node
Node	(mir	าร)	(m)	(l/s)	Vol (m³)
2A	9	60	0.511	46.7	600.0269
2B	9	60	0.520	75.1	1020.5460
2 (PR)	6	15	0.524	54.8	200.1840
3A	9	60	0.522	89.3	1223.6760
3B	9	60	0.520	75.2	1020.1430
3 (PR)	8	70	0.581	88.0	87.7652
4A	6	60	0.501	40.9	360.9297
4 (PR)	13	80	0.601	91.5	91.3620
OUTFAL	L 13	80	0.099	90.2	0.0000
US	Link		DS	Outflow	Discharge
Node		١	lode	(l/s)	Vol (m³)
2A	2.000	2 (PR)	11.6	
2B	1.000	2 (PR)	17.9	
2 (PR)	1.001	3 (PR)	36.8	
3A	3.000	3 (PR)	21.3	
3B	4.000	3 (PR)	17.9	
3 (PR)	1.002	4 (PR)	80.9	
4A	5.000	4 (PR)	8.8	
4 (PR)	1.003	ΟĹ	JTFALL	90.2	7650.9
	Node 2A 2B 2 (PR) 3A 3B 3 (PR) 4A 4 (PR) OUTFAL US Node 2A 2B 2 (PR) 3A 3B 3 (PR) 4A	Node (mir 2A 9 2B 9 2 (PR) 6 3A 9 3 (PR) 8 4A 6 4 (PR) 13 OUTFALL 13 US Link Node 2A 2.000 2 (PR) 1.001 3A 3.000 3 (PR) 1.002 4A 5.000	Node (mins) 2A 960 2B 960 2 (PR) 615 3A 960 3 (PR) 870 4A 660 4 (PR) 1380 OUTFALL 1380 US Link Node N 2A 2.000 2 (2B 1.000 2 (2 (PR) 1.001 3 (3A 3.000 3 (3B 4.000 3 (3B 4.000 3 (4A 5.000 4 (Node (mins) (m) 2A 960 0.511 2B 960 0.520 2 (PR) 615 0.524 3A 960 0.520 3 (PR) 870 0.581 4A 660 0.501 4 (PR) 1380 0.601 OUTFALL 1380 0.099 US Link DS Node Node 2A 2.000 2 (PR) 2B 1.000 2 (PR) 2 (PR) 1.001 3 (PR) 3A 3.000 3 (PR) 3B 4.000 3 (PR) 3 (PR) 1.002 4 (PR) 4A 5.000 4 (PR)	Node (mins) (m) (I/s) 2A 960 0.511 46.7 2B 960 0.520 75.1 2 (PR) 615 0.524 54.8 3A 960 0.522 89.3 3B 960 0.520 75.2 3 (PR) 870 0.581 88.0 4A 660 0.501 40.9 4 (PR) 1380 0.601 91.5 OUTFALL 1380 0.099 90.2 US Link DS Outflow Node Node (I/s) 2A 2.000 2 (PR) 11.6 2B 1.000 2 (PR) 17.9 2 (PR) 1.001 3 (PR) 36.8 3A 3.000 3 (PR) 21.3 3B 4.000 3 (PR) 17.9 3 (PR) 17.9 3 (PR) 17.9 3 (PR) 1.002 4 (PR) 80.9

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Areas 2, 3, 4

РΒ

1440 minute summer 3A

1440 minute summer 3B

960 minute summer

960 minute summer

10/05/2023

Page 7

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Pea		oth Inflow	
	Node	(mir	ıs) (n	n) (l/s)	Vol (m³)
1440 minute summer	2A	99	90 0.5	597 52.7	701.3262
1440 minute summer	2B	99	90 0.6	605 84.7	1185.6750
960 minute summer	2 (PR)	63	30 0.5	597 58.3	227.9146
1440 minute summer	3A	99	90 0.6	506 100.8	1419.9140
1440 minute summer	3B	99	90 0.6	504 84.8	3 1184.3410
960 minute summer	3 (PR)	60	0.6	535 94.8	95.9385
960 minute summer	4A	6	75 0.5	89 46.4	424.2137
2160 minute summer	4 (PR)	138	30 0.6	547 92.4	98.3378
2880 minute summer	OUTFAL	L 180	50 0.1	100 90.3	0.0000
Link Event	US	Link	DS	Outflo	w Discharge
(Upstream Depth)	Node		Node	e (I/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.	6
1440 minute summer	2B	1.000	2 (PR)	17.	9
960 minute summer	2 (PR)	1.001	3 (PR)	36.	8

3.000 3 (PR)

4.000 3 (PR)

5.000 4 (PR)

4 (PR)

3 (PR) 1.002

4A

2160 minute summer 4 (PR) 1.003 OUTFALL

21.3

17.9

81.1

8.8

90.3

8084.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Page 8

Network: Drainage Areas 2, 3, 4

10/05/2023

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Pea	ak	Depth	Inflow	Node
	Node	(mir	าร)	(m)	(I/s)	Vol (m³)
1440 minute summer	2A	10	50	0.775	63.9	910.6796
1440 minute summer	2B	10	80	0.775	102.6	1520.0240
960 minute summer	2 (PR)	6	30	0.748	64.6	285.9204
1440 minute summer	3A	10	50	0.774	122.2	1815.6390
1440 minute summer	3B	10	80	0.776	102.8	1520.9450
960 minute summer	3 (PR)	6	00	0.753	99.2	113.7122
960 minute summer	4A	7	35	0.770	56.6	554.1972
2880 minute summer	4 (PR)	18	00	0.715	92.9	108.6410
1440 minute summer	OUTFAL	L 10	20	0.100	90.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		N	lode	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.6	
1440 minute summer	2B	1.000	2 (PR)	17.9	
960 minute summer	2 (PR)	1.001	3 (PR)	36.8	
1440 minute summer	3A	3.000	3 (PR)	21.3	
1440 minute summer	3B	4.000	3 (PR)	17.9	
960 minute summer	3 (PR)	1.002	4 (PR)	81.1	
960 minute summer	4A	5.000	4 (PR)	8.8	
2880 minute summer	4 (PR)	1.003		JTFALL	90.3	10684.8

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Page 9

Network: Drainage Areas 2, 3, 4

РΒ

10/05/2023

Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Pea	ak	Depth	Inflow	Node
	Node	(mir	ns)	(m)	(l/s)	Vol (m³)
1440 minute summer	2A	10	80	1.000	78.9	1174.6780
1440 minute summer	2B	11	10	1.000	126.7	1960.7690
960 minute summer	2 (PR)	7	05	0.998	72.8	381.2310
1440 minute summer	3A	11	10	1.000	150.8	2344.0520
1440 minute summer	3B	11	10	1.000	126.9	1960.4870
960 minute summer	3 (PR)	6	75	0.995	104.5	150.2181
960 minute summer	4A	7	65	0.999	70.4	719.1832
4320 minute summer	4 (PR)	27	60	0.991	92.7	150.6135
480 minute summer	OUTFAL	L 2	88	0.100	90.3	0.0000
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node		ſ	Node	(l/s)	Vol (m³)
1440 minute summer	2A	2.000	2 (PR)	11.6	
1440 minute summer	2B	1.000	2 (PR)	17.8	
960 minute summer	2 (PR)	1.001	3 ((PR)	36.8	
1440 minute summer	3A	3.000	3 (PR)	21.3	
1440 minute summer	3B	4.000	3 ((PR)	17.8	
960 minute summer	3 (PR)	1.002	4 ((PR)	81.1	
960 minute summer	4A	5.000	4 ((PR)	8.8	
4320 minute summer	4 (PR)	1.003	Ol	JTFALL	90.3	15669.2

JBA

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Page 1

Х

240

0.0

Network: Drainage Area 5

РΒ

10/05/2023

Simulation Settings

Rainfall Methodology **FSR** Skip Steady State FSR Region Scotland and Ireland Drain Down Time (mins) M5-60 (mm) 16.400 Additional Storage (m³/ha) 0.274 Ratio-R Check Discharge Rate(s) Check Discharge Volume

Summer CV 1.000 Analysis Speed Detailed

Storm Durations

15 60 180 360 600 960 2160 4320 7200 10080 30 120 240 480 720 1440 2880 5760 8640

> Return Period Climate Change Additional Area Additional Flow (CC %) (years) (A %) (Q%) 20 10 0 1 2 20 10 0 5 0 20 10 10 20 10 0 30 20 10 0 100 20 10 0

> > Node 5A Online Hydro-Brake® Control

Flap Valve Objective (HE) Minimise upstream storage

Replaces Downstream Link Sump Available

Invert Level (m) 68.000 Product Number CTL-SHE-0139-9000-1000-9000

Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225 Design Flow (I/s) 9.0 Min Node Diameter (mm) 1200

Node 5 (PR) Online Hydro-Brake® Control

Flap Valve Objective (HE) Minimise upstream storage Χ Replaces Downstream Link Sump Available Χ

67.000 CTL-SHE-0160-1230-1000-1230 Invert Level (m) Product Number Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225

Design Flow (I/s) 12.3 Min Node Diameter (mm) 1200

Node 5A Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 68.000 Side Inf Coefficient (m/hr) 0.00000 Time to half empty (mins) Porosity 1.00 570

> Depth Inf Area Depth Inf Area Area Area (m) (m²)(m²)(m) (m²)(m²)0.000 959.0 0.0 1.000 959.0 0.0

> > Node 5 (PR) Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 67.000 0.00000 Safety Factor 2.0 Invert Level (m) Side Inf Coefficient (m/hr) 0.00000 Porosity Time to half empty (mins) 375 1.00

> Inf Area Inf Area Depth Area Depth Area (m) (m²)(m²)(m²)(m²)(m) 0.000 150.0 1.000 150.0 0.0 0.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 5

РΒ

10/05/2023

Page 2

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	5A	930	0.346	27.8	331.5821
960 minute summer	5 (PR)	585	0.330	16.6	49.4844
960 minute summer	OUTFALL	585	0.068	12.2	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
960 minute summer	5 (PR)	1.001	OUTFALL	12.2	502.7

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 5 PB

10/05/2023

Page 3

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

	Node Event	US Node		Depth (m)		Node Vol (m³)
144	0 minute summer	5A	930	0.417	32.2	399.4253
960	minute summer	5 (PR)	600	0.391	18.1	58.6716
960	minute summer	OUTFALL	600	0.068	12.3	0.0000
		110 11	1	D.C	O 1 CI	D: 1

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
960 minute summer	5 (PR)	1.001	OUTFALL	12.3	546.7

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 5

РΒ

10/05/2023

Page 4

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	5A	960	0.510	37.8	489.3045
960 minute summer	5 (PR)	615	0.482	19.9	72.3661
240 minute summer	OUTFALL	264	0.068	12.3	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
960 minute summer	5 (PR)	1.001	OUTFALL	12.3	582.3

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 5

РВ

10/05/2023

Page 5

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	5A	990	0.597	42.6	572.6187
960 minute summer	5 (PR)	630	0.570	21.3	85.5392
2880 minute summer	OUTFALL	1800	0.068	12.3	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
960 minute summer	5 (PR)	1.001	OUTFALL	12.3	606.1

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 5 PB

10/05/2023

Page 6

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	5A	1080	0.776	51.6	743.7120
720 minute summer	5 (PR)	525	0.753	27.0	113.0159
60 minute summer	OUTFALL	134	0.068	12.3	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
720 minute summer	5 (PR)	1.001	OUTFALL	12.3	500.8

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

РΒ

10/05/2023

Page 7

Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Network: Drainage Area 5

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	5A	1110	1.000	63.7	958.5212
960 minute summer	5 (PR)	675	0.996	27.5	149.3266
30 minute summer	OUTFALL	25	0.068	12.3	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	5A	1.000	5 (PR)	9.0	
960 minute summer	5 (PR)	1.001	OUTFALL	12.3	636.8

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Page 1 Network: Drainage Area 6

РΒ

10/05/2023

Simulation Settings

О
)

Storm Durations

15	60	180	360	600	960	2160	4320	7200	10080
30	120	240	480	720	1440	2880	5760	8640	

Return Period	Climate Change	Additional Area	Additional Flow
(years)	(CC %)	(A %)	(Q %)
1	20	10	0
2	20	10	0
5	20	10	0
10	20	10	0
30	20	10	0
100	20	10	0

Node 6A Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	✓
Invert Level (m)	67.000	Product Number	CTL-SHE-0182-1650-1000-1650
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	16.5	Min Node Diameter (mm)	1500

Node 6 (PR) Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Χ	Sump Available	\checkmark
Invert Level (m)	66.000	Product Number	CTL-SHE-0185-1710-1000-1710
Design Depth (m)	1.000	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	17.1	Min Node Diameter (mm)	1500

Node 6A Depth/Area Storage Structure

Base Inf Coefficient (r	n/hr) 0	.00000	Safety Fa	ctor 2.0		Invert	Level (m)	67.000
Side Inf Coefficient (r	n/hr) 0	.00000	Porc	sity 1.00) Tim	ne to half emp	ty (mins)	570
	Depth	Area	Inf Area	Depth	Area	Inf Area		
	(m)	(m ²)	(m²)	(m)	(m ²)	(m ²)		
	0.000	1796.0	0.0	1.000	1796.0	0.0		

Node 6 (PR) Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	66.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	540
_					

Depth	Area	int Area	Depth	Area	int Area
(m)	(m ²)	(m ²)	(m)	(m ²)	(m ²)
0.000	20.0	0.0	1.000	20.0	0.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 6

РΒ

1440 minute summer 6A

960 minute summer

10/05/2023

Page 2

736.6

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US Node		Peak mins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
	Noue	(1	111115)	(111)	(1/5)	voi (iii)
1440 minute summer	6A		930	0.355	51.1	638.2138
960 minute summer	6 (PR)		600	0.317	17.2	6.3352
960 minute summer	OUTFAL	L	600	0.053	17.0	0.0000
Link Event (Upstream Depth)	US Node	Link		DS Node	Outflow (l/s)	Discharge Vol (m³)

1.000 6 (PR)

6 (PR) 1.001 OUTFALL

16.5

17.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 6

РΒ

10/05/2023

Page 3

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US	Peak	'		Node
	Node	(mins) (m)	(l/s)	Vol (m³)
1440 minute summer	6A	930	0.424	59.2	762.3869
960 minute summer	6 (PR)	585	0.364	17.7	7.2817
960 minute summer	OUTFALL	585	0.053	17.1	0.0000
Link Event	US L	ink	DS	Outflow	Discharge

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 6 PB

10/05/2023

Page 4

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	6A	960	0.517	69.5	928.6901
720 minute summer	6 (PR)	465	0.439	18.6	8.7725
1440 minute summer	OUTFALL	780	0.053	17.1	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (PR)	16.5	
720 minute summer	6 (PR)	1.001	OUTFALL	17.1	680.6

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

Network: Drainage Area 6 PB

1440 minute summer 6A

960 minute summer

10/05/2023

Page 5

847.5

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

US Node	Peak	Depth	Inflow	Node Vol (m³)
Noue	(1111113)	(111)	(1/3)	voi (iii <i>)</i>
6A	990	0.602	78.4	1081.5930
6 (PR)	600	0.532	18.6	10.6482
OUTFALL	600	0.053	17.1	0.0000
		DS Node	Outflow	Discharge Vol (m³)
	Node 6A 6 (PR) OUTFALL	Node (mins) 6A 990 6 (PR) 600 OUTFALL 600	Node (mins) (m) 6A 990 0.602 6 (PR) 600 0.532 OUTFALL 600 0.053 US Link DS	Node (mins) (m) (l/s) 6A 990 0.602 78.4 6 (PR) 600 0.532 18.6 OUTFALL 600 0.053 17.1 US Link DS Outflow

1.000 6 (PR)

6 (PR) 1.001 OUTFALL

16.5

17.1

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 6

РΒ

1440 minute summer 6A

240 minute summer

10/05/2023

Page 6

368.0

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	6A	1080	0.777	95.0	1395.3070
240 minute summer	6 (PR)	480	0.943	22.6	18.8697
60 minute summer	OUTFALL	103	0.053	17.1	0.0000
Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)

1.000 6 (PR)

6 (PR) 1.001 OUTFALL

16.5

17.1

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 6 PB

10/05/2023

Page 7

Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.76%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	6A	1110	1.000	117.2	1795.2080
1440 minute summer	6 (PR)	1050	0.968	18.5	19.3594
60 minute summer	OUTFALL	287	0.053	17.1	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	6A	1.000	6 (PR)	16.5	
1440 minute summer	6 (PR)	1.001	OUTFALL	17.1	1218.4

JBA

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 7

PB

10/05/2023

Simulation Settings

Rainfall Methodology FSR Skip

FSR Region Scotland and Ireland M5-60 (mm) 16.400

Ratio-R 0.274 Summer CV 1.000 Analysis Speed Detailed Skip Steady State x
Drain Down Time (mins) 240
Additional Storage (m³/ha) 0.0
Check Discharge Rate(s) x

Check Discharge Volume

Page 1

Storm Durations

15 60 180 360 600 960 2160 4320 7200 10080 30 120 240 480 720 1440 2880 5760 8640

> Return Period Climate Change Additional Area Additional Flow (CC %) (years) (A %) (Q%) 20 10 0 1 2 20 10 0 5 0 20 10 10 20 10 0 30 20 10 0 100 20 10 0

> > Node 7A Online Hydro-Brake® Control

Flap Valve x Objective (HE) Minimise upstream storage

Replaces Downstream Link x Sump Available ✓

Invert Level (m) 67.000 Product Number CTL-SHE-0171-1420-1000-1420
Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225

Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225 Design Flow (l/s) 14.2 Min Node Diameter (mm) 1200

Node 7 (PR) Online Hydro-Brake® Control

Flap Valve x Objective (HE) Minimise upstream storage
Replaces Downstream Link x Sump Available
✓
Invert Level (m) 66.000 Product Number CTL-SHE-0174-1480-1000-1480

Invert Level (m) 66.000 Product Number CTL-S

Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225

Design Flow (I/s) 14.8 Min Node Diameter (mm) 1200

Node 7A Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 67.000

Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins) 570

Depth Inf Area Depth Inf Area Area Area (m) (m²)(m²)(m) (m²)(m²)0.000 1533.0 0.0 1.000 1533.0 0.0

Node 7 (PR) Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 66.000 Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins) 630

Inf Area Inf Area Depth Area Depth Area (m²)(m²)(m²)(m²)(m) (m) 0.000 14.0 1.000 14.0 0.0 0.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 7 PB

10/05/2023

Page 2

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		Depth (m)		Node Vol (m³)
1440 minute summer	7A	930	0.352	43.9	539.7116
960 minute summer	7 (PR)	585	0.340	14.9	4.7595
960 minute summer	OUTFALL	585	0.072	14.6	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	7A	1.000	7 (PR)	14.2	
960 minute summer	7 (PR)	1.001	OUTFALL	14.6	643.5

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 7

РΒ

1440 minute summer 7A

960 minute summer

10/05/2023

Page 3

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		Peak mins)	Depth (m)	Inflow (I/s)	Node Vol (m³)
1440 minute summer	7A	ν.	930	0.422	50.9	646.5808
960 minute summer	7 (PR)		585	0.395	15.4	5.5362
960 minute summer	OUTFAL	L	585	0.073	14.8	0.0000
					- 41	
Link Event	US	Link		DS	Outflow	Discharge
(Upstream Depth)	Node			Node	(l/s)	Vol (m³)

1.000 7 (PR)

7 (PR) 1.001 OUTFALL

14.2

14.8

701.4

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

Network: Drainage Area 7

РΒ

10/05/2023

Page 4

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US Node		Depth (m)		Node Vol (m³)
1440 minute summer	7A	960	0.515	59.6	788.9893
720 minute summer	7 (PR)	465	0.496	16.1	6.9393
360 minute summer	OUTFALL	216	0.073	14.8	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	7A	1.000	7 (PR)	14.2	
720 minute summer	7 (PR)	1.001	OUTFALL	14.8	591.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 7

РВ

10/05/2023

Page 5

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	7A	990	0.600	67.3	919.3425
480 minute summer	7 (PR)	720	0.993	17.2	13.9029
120 minute summer	OUTFALL	88	0.073	14.8	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	7A	1.000	7 (PR)	14.2	
480 minute summer	7 (PR)	1.001	OUTFALL	14.8	447.5

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

РΒ

10/05/2023

Page 6

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Network: Drainage Area 7

Node Event	US Node		Depth (m)		Node Vol (m³)
1440 minute summer	7A	1080	0.775	81.5	1188.5590
180 minute summer	7 (PR)	420	0.983	20.9	13.7665
60 minute summer	OUTFALL	119	0.073	14.8	0.0000

Link Event	US	Link	DS	Outflow	Discharge
(Upstream Depth)	Node		Node	(l/s)	Vol (m³)
1440 minute summer	7A	1.000	7 (PR)	14.2	
180 minute summer	7 (PR)	1.001	OUTFALL	14.8	286.5

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

РΒ

10/05/2023

Page 7

Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.56%

Network: Drainage Area 7

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	7A	1110	0.999	100.7	1532.0640
1440 minute summer	7 (PR)	1020	0.997	16.1	13.9511
60 minute summer	OUTFALL	38	0.073	14.8	0.0000
Link Event	US	Link	DS	Outflow	Discharge

(Upstream Depth) Node Node (I/s) Vol (m³)

1440 minute summer 7A 1.000 7 (PR) 14.2

1440 minute summer 7 (PR) 1.001 OUTFALL 14.8 1060.9

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Page 1

Network: Drainage Area 8

PB

10/05/2023

Simulation Settings

Rainfall Methodology **FSR** Skip Steady State Х Drain Down Time (mins) FSR Region Scotland and Ireland 240 M5-60 (mm) 16.400 Additional Storage (m³/ha) 0.0 Ratio-R 0.274 Check Discharge Rate(s) Summer CV 1.000 Check Discharge Volume Analysis Speed Detailed

Storm Durations

15 60 180 360 600 960 2160 4320 7200 10080 30 120 240 480 720 1440 2880 5760 8640

> Return Period Climate Change Additional Area Additional Flow (years) (CC %) (A %) (Q%) 1 20 10 0 2 20 10 0 5 0 20 10 10 20 10 0 30 20 10 0 100 20 10 0

> > Node 8A Online Hydro-Brake® Control

Flap Valve x Objective (HE) Minimise upstream storage Replaces Downstream Link Sump Available CTL-SHE-0165-1320-1000-1320 Invert Level (m) 67.000 Product Number Design Depth (m) 1.000 Min Outlet Diameter (m) 0.225 Design Flow (I/s) 13.2 Min Node Diameter (mm) 1200

Node 8A Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 67.000 Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins) 570

Depth Inf Area Depth Area Inf Area Area (m²)(m²)(m) (m²)(m) (m²)0.000 1451.0 0.0 1.000 1451.0 0.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01. Network: Drainage Area 8

РΒ

10/05/2023

Page 2

Results for 1 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	8A	930	0.360	40.8	522.0942
1440 minute summer	OUTFALL	930	0.071	13.1	0.0000

Link Event US Link DS Outflow Discharge (Upstream Depth) Node Node (I/s) Vol (m³) 1440 minute summer 8A 1.000 OUTFALL 13.1 725.9

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

РΒ

10/05/2023

Page 3

Results for 2 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

Network: Drainage Area 8

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	8A	930	0.429	47.4	621.8341
720 minute summer	OUTFALL	480	0.071	13.2	0.0000

Link Event US Link DS Outflow Discharge (Upstream Depth) Node Node (I/s) Vol (m³) 1440 minute summer 8A 1.000 OUTFALL 13.2 821.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

РΒ

10/05/2023

Page 4

Results for 5 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

Network: Drainage Area 8

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	8A	960	0.520	55.5	754.0192
600 minute summer	OUTFALL	345	0.071	13.2	0.0000

Link Event US Link DS Outflow Discharge (Upstream Depth) Node Node (I/s) Vol (m³) 1440 minute summer 8A 1.000 OUTFALL 13.2 880.0

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 8

РΒ

10/05/2023

Page 5

Results for 10 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	8A	990	0.604	62.6	876.9419
240 minute summer	OUTFALL	152	0.071	13.2	0.0000

Link Event US Link DS Outflow Discharge (Upstream Depth) Node Node (I/s) Vol (m³) 1440 minute summer 8A 1.000 OUTFALL 13.2 892.6

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01

Network: Drainage Area 8 PB

10/05/2023

Page 6

Results for 30 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US	Peak	Depth	Inflow	Node
	Node	(mins)	(m)	(l/s)	Vol (m³)
1440 minute summer	8A	1080	0.777	75.9	1126.8420
60 minute summer	OUTFALL	60	0.071	13.2	0.0000

Link Event US Link DS Outflow Discharge (Upstream Depth) Node Node (I/s) Vol (m³) 1440 minute summer 8A 1.000 OUTFALL 13.2 862.5

File: JQZ-JBAI-XX-XX-CA-C-0004-S0-P01.

Network: Drainage Area 8 PB

10/05/2023

Page 7

Results for 100 year +20% CC +10% A Critical Storm Duration. Lowest mass balance: 99.92%

US Depth Inflow Node Event Peak Node (mins) Node (m) (I/s)Vol (m³) 1440 minute summer 8A 1110 1.000 93.7 1450.5450 30 minute summer OUTFALL 32 0.071 13.2 0.0000

Link Event US Link DS Outflow Discharge (Upstream Depth) Node Node (I/s) Vol (m³) 1440 minute summer 8A 1.000 OUTFALL 13.1 927.6

